On the Parameterized Complexity of Learning Monadic Second-Order Formulas

Nina Runde (Steffen van Bergerem, Martin Grohe) July 27, 2023

RWTH Aachen University

Understanding the Problem

MODEL CHECKING Input: Graph \mathcal{G}, φ Problem: $\mathcal{G} \models \varphi$?

ENUMERATION	
Input:	Graph \mathcal{G} , $arphi(x_1,x_2)$
Problem:	Enumerate all (v_1, v_2) such that
	$\mathcal{G}\models\varphi(v_1,v_2)$

CONSISTENT LEARNING

Example



$$\mathbb{S} = \{((v_1, v_2), +), ((v_2, v_3), +), ((v_3, v_5), -)\}$$

Find $\varphi(x_1, x_2)$

 $\varphi(x_1, x_2) = ((x_1 = v_1) \land (x_2 = v_2)) \lor ((x_1 = v_2) \land (x_2 = v_3))?$

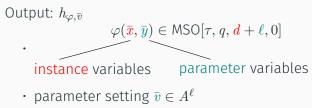
Limit the number of parameter variables!

Find $\varphi(x_1, x_2, y_1)$ and an assignment for y_1

Problem Definition MSO-CONSISTENT-LEARN

Input:

- τ -structure \mathcal{A} of universe A
- training set $\mathbb{S} \subseteq A^d \times \{+, -\}$
- · $d, \ell, q \in \mathbb{N}$



consistent

$$\begin{array}{l} (\bar{w}_1,+) \in \mathbb{S} \text{ then } \mathcal{A} \models \varphi(\bar{w}_1,\bar{v}) \\ (\bar{w}_2,-) \in \mathbb{S} \text{ then } \mathcal{A} \nvDash \varphi(\bar{w}_2,\bar{v}) \end{array}$$

Parameterized complexity of a problem Q with input x and parameterization $\kappa(x)$:

Is there an algorithm for Q with runtime $f(\kappa(x)) \cdot p(|x|)$? Then (Q, κ) is fixed-parameter tractable.

For MSO-CONSISTENT-LEARN we choose $\kappa = |\tau| + d + \ell + q + \mathsf{tw}(\mathcal{A})?$

Tractability

Previous result:

- MSO-CONSISTENT-LEARN for d = 1 on strings (Grohe, Löding, Ritzert, 2017)
- MSO-CONSISTENT-LEARN for d = 1 on trees (Grienenberger, Ritzert, 2019)

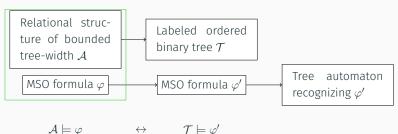
New results:

- MSO-CONSISTENT-LEARN for d = 1 on relational structures of bounded tree-width
- MSO-CONSISTENT-LEARN for d = 1 on graphs of bounded clique-width
- MSO-PAC-LEARN for higher dimensions $d \ge 1$ on relational structures of bounded tree-width

Tractability - How?

Find formula $\varphi(\bar{x}, \bar{y})$ and parameter assignment $\bar{v} \in A^{\ell}$ The size of MSO[$\tau, q, d + \ell, 0$] is small \Rightarrow Finding φ is easy.

Main Problem: Finding the parameter assignment $\bar{v} \in A^\ell$



Input

Hardness

How hard is learning compared to model checking?

Previous Results:

• FO-LEARN is as hard as FO-MC (van Bergerem et al., 2022)

MSO-Mc (MODEL CHECKING) Input: Graph \mathcal{G} , monadic second-order formula φ Problem: Does $\mathcal{G} \models \varphi$ hold?

q-Type

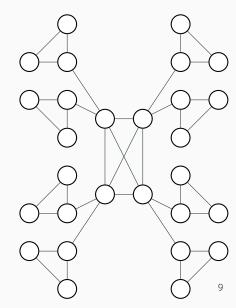
Example: $\exists x \ \psi(x)$

$$\begin{split} tp_{q,\tau}(\mathcal{A},a) &= \{\varphi(x) \mid \mathcal{A} \models \varphi(a)\} \\ \text{for } \varphi \in \mathsf{MSO}[\tau,q,1,0] \end{split}$$

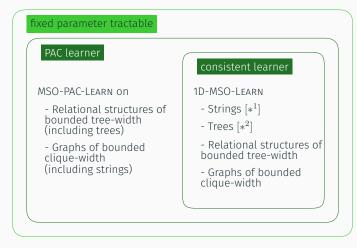
Set of representatives: $R = \{v_1, v_3, v_4\}$

Run CONSISTENT-LEARN oracle on \mathcal{G} with $\mathbb{S} = \{(v_1, +), (v_2, -)\}$

What about $\exists X \ \psi(X)$?



Results



Hardness:

• Work in progress (But probably as hard as MSO-MC)